Tag Archives: workbench

Legvise with a twist (Chapter three)

In the final chapter of this series of posts we will look at how I finished this unique legvise. It could be a useful idea to other woodworkers who does not have a proper dedicated workbench.

In these first pictures you can see how I made the rollers for the parallel guide. Unfortunately I only saw the idea to use skateboard wheels after I built these, but I would recommend using them if you still have to build yours. I used an inexpensive plastic wheel used to guide automatic steel gates, which is very common in this part of the world where we all hide behind electric fences. It works fine but does not have a smooth low friction ball-bearing system like the skateboard wheels.

100_1092100_1093100_1094100_1095100_1096

Next I used my newly purchased Festool router to cut a dado that would accept the Kershout strips meant to clamp the edges of the leather that would ultimately grace the faces of the jaws.

100_1101100_1102100_1103100_1107

I then assembled the legvise temporarily in order to drill the hole for the large single screw vise.

100_1109100_1110100_1111

Due to the length of the “nut” (pictured below) that accepts the screw, I had to add some wood to the inside jaws, as seen in the pictures above.

100_0372

Below you can see how I used handtools to custom fit the “nut” into the inside jaw for a lifetime of abuse.

100_1112100_1113100_1114100_1115

I then fitted the screw to the chop.

100_1120100_1121

Below you can see how I glued leather from a Red Dear I shot while living in New Zealand to the inside of both jaws.

100_1122100_1123100_1124100_1125

The leather was then clamped into place tidily using custom sized (by using handplanes) Kershout strips screwed into a shallow dado on the sides of the jaws.

100_1126100_1132100_1135100_1136100_1137100_1138100_1141

Next I had to shape a scrap piece of steel that could slide into the T-channel on the side of my assembly table in order to fix the inside jaw to the table in a manner that would make it easy to move the legvise from one location to the next if needed. You can see how I welded nuts to the steel as at this point in time I still did not have thread cutting tools. You will also notice that the piece of steel was deliberately bent slightly so that once the bolts are tightened it would apply even pressure across the length of it.

100_1147100_1148

From this point on you should be able to see what I was aiming for. In the first picture you can see how the rollers and adjustable feet were attached. The next pictures show how the two jaws were assembled by means of the vise screw for the first time.

100_1160100_1161100_1163100_1165

The first time I attached the legvise to the assembly table to test out a few things. I realised that I had to do a few adjustments to the feet.

100_1167

Here I am shaping a piece of Witpeer in order to turn the ends of the handle.

100_1193100_1194100_1195100_1196100_1197100_1199100_1200

Here you can see how I modified the feet. I inserted two pins that was epoxied into place that would ultimately sit inside a small rubber disc. The area between the disc and the nut received a coat of grease to allow the adjustable feet to rotate easily while being firmly pressed against the floor.

100_1208

I am not sure what the correct term is for this instrument, but it is the one that gets jammed into the wholes in the parallel guide and you can see that I made mine from scratch.

100_1209

Finally the legvise was fitted to the table in the position I thought would be best for now. In the second picture you can see what I was on about regarding the modification of the adjustable feet. You will also note the nuts that was added to lock the threaded rod feet into place once it is adjusted to the correct height. The third picture show the nameless instrument in position in the parallel guide.

100_1216100_1218100_1222

The final product was well worth the effort displaying the beautiful orange and grayish-yellow colours of the Assegaai and Witpeer. I have to say that it works even better than anticipated and I would not change too much at all if I build another one.

IMG_5567IMG_5568

 

You can start looking out for some posts on the sliding deadman that I built to toil in tandem with this baby.

Alternative workbench/assembly table (Chapter five)

Finally, we embark upon the last stage of this adventure in looking at the chop (of the quick-release-vise), how the top was finished and a few examples of how the table assists with work holding. You will remember that work holding ability was one of the primary objectives behind the design of this table. The chapter concludes with a bit of a postmortem.

In the pictures below you can see how I put the chop of the quick-release-vise together. Again I used Ysterhout and created 4 square dogholes. In hind sight I made a mistake by laminating the pieces of wood between the doghole cross-grain to the rest. Since I made this chop-face the wood has moved enough to create approximately 2 mm difference at the top as well as the bottom, after starting off flush. This should not have been a surprise, but served as a useful reminder why it is generally discouraged. It does however not cause any functional limitations, but will probably lead to an immature demise of the chop. Time will tell.

100_0177100_0178

100_0180

Here you can see how I flattened the face of the chop with a belt sander. I did not have anything better for the job at the time. The wood is simply too hard for a normal handplane and I still did not have my Lie-Nielsen babies back then. Even the Lie-Nielsen’s at a bedding angle of 50° (York pitch) reject this wood as unpalatable.

100_0194100_0197

Here I added purely cosmetic parts to the chop.

100_0212100_0234

Initial shaping of the chop-face on the table saw.

100_0241

A quick dry fit before final shaping, with my son Didi acting as model together with our German Shorthaired Pointer called Nietzsche. Didi is doing his rendition of O-Ren Ishii (aka Cottonmouth) in Kill Bill.

100_0242100_0243100_0244100_0245

All the Ysterhout edges were fixed to the top standing proud by a millimeter or so. In the next pictures you can see how I brought everything into one plane by careful belt sanding. I know this is a kak idea, but I honestly did not have another option at the time. The second picture does at least show that I got it reasonably flat.

100_0237100_0238100_0239

The next step was to glue in the steel ruler on two sides of the table. Although the ruler stop inside the Ysterhout edge, I set it up (by carefully removing the correct amount) so that the ruler show the measurement as of from the edge. This way I can have a stop flush with the edge, push a piece of stock against it and very quickly read the length or mark a measurement on it without having to fiddle with a tape-measure. You will remember how we recessed this area of the bench to ensure that the ruler sits flush with the top.

100_0247100_0248100_0251100_0249

Then I started drawing lines corresponding to each 10 cm on the rulers. Every second line being green and the ones in between black. This makes it easy to count in 20 cm steps. The lines are square to the sides of the table and each other, which makes it easy to set up square guides for gluing panels.

100_0255100_0256

The plywood part of the top was then sealed with floor varnish in order to have a fairly hardwearing surface that is easy to clean when wood glue is spilled on it.

100_0257100_0258

All the Ysterhout edges were treated with something called Woodoc, which as a local product that probably contains a mixture of oils. I assume it must be something like dried Linseed and/or Tung oil because it dries to a film on top of the wood after a few layers, but is easy remove or touch up if necessary. It certainly liberates the shear beauty of the Ysterhout.

100_0271100_0287100_0288100_0289

… and voilà … the final product for your perusal!!!

100_0285100_0293

Here you can see where my benchdogs live. If you are interested to see how I made these, please please the post on Bench Bitches under the category Bench accessories.

100_0303

I though I should include a few pictures illustrating how the bench assists with work holding.

100_0575100_0876100_0875100_0884100_0885100_0890100_0859

 

 

In the next few pictures you can see how the T-channel (which can be accessed through any of the  round access points rather than only the ends, as seen in the second picture) and benchdogs work in tandem to hold the two wide plane-stops in place for hand planing.

DSC03191DSC03192DSC03193

This was an immensely satisfying project, the result of which really improves the quality of my work and the amount of pleasure I get out of spending time in the shop. Having said that, I think it is important to always think about how one could improve your work. Therefore I thought it might be useful to consider what I have learnt while building and using this table.

The main problem I have found so far has to do with the table’s overhanging edges. I other words, not having legs in the same plane as the edge of the table. This combined with the fact that the table’s main frame is made out of steel rather than wood combines to create a less solid and noisy surface when using a chisel and mallet to chop mortises for example. Even at the top of the leg it does not feel or sound as good as on a proper wooden bench with massive wooden legs. I would not change the design of the table because of this, as the ultimate objective with this table is to have a dedicated assembly table and for such a table it is much better to have the legs out of the way to improve the ease of movement around it. It might actually help someone else building a similar table to consider different options depending on their needs. I have to bear with this shortfall until I build my dedicated bench.

The next thing I have noticed is that my table is a bit too high for hand planing. Again this would not necessarily change my design as I am currently bound by the height of my table saw as this assembly table doubles up as an out-feed table. It did however help me to understand what the people who knows are on about regarding this issue. When the table is too high you end up using your arms more than your legs, which means that your control deteriorates and you get tired much quicker. I can really recommend Christopher Schwarz’s discussion on this in his book “Workbenches: from design & theory to construction & use”.

The next issue would actually change how I do it if I had to do it again. Given that I am using it as a workbench in the interim, I think I should have used proper wood for the top rather than plywood. I would also increase the thickness of the top while doing so.

Finally, I think I should have borrowed a router (as I did not have one at the time) to do the dogholes with. That would have done a much better job in terms of getting the holes 100% square to the working surface.

I do hope that someone will be able to learn something from this or at least get a few ideas for their own table/bench.

 

Legvise with a twist (Chapter two)

As promised, we will start looking at what makes this legvise different to others in this chapter. For one thing, I do not know of any legvise that sports an Ysterhout parallel guide. If you are interested you could read more about Ysterhout’s properties in my post on my assembly table. (www.jenesaisquoiwoodworking.com/alternative-workbenchassembly-table-chapter-four)

This process might well seem a smidgen confusing, but I show the process as close as possible to how it happened. It means that various parts gets worked on all at the same time and we discuss only the small step that was taken at that time then jump to the next part and return to the previous part at some point in the future. If you do woodwork I am sure you will understand this haphazard methodology.

In the pictures below you can see how I laminated two pieces of ysterhout to create the beginning of a parallel guide.

100_0371100_0374

The area I removed here was done on the table saw. The idea was to use this design to provide ample structural strength to the joint with the chop (moving jaw of the legvise). As I see it this is a critical joint that will have to endure innumerable years of abuse.

100_0401100_0403100_0402

At about this point in time, my first acquisition from Lie-Nielsen arrived, a large vise screw.

100_0372100_0375

Now we can start to address were this legvise really departs from the norm. As I explained extensively in my post on the assembly table, I opted to modify an assembly table to double up as a workbench until I know what I want from a workbench. My assembly table does not have massive wooden legs that are in the same plane as the top. Therefore the first difference is that the inside jaw of my legvise had to be made, so you could actually argue that it is not a legvise because it does not contain a leg?? You would have noticed the two jaws being assembled in chapter one.

The next problem involves my assembly table’s ability to be adjusted up and down. (see Alternative Workbench/assembly table chapter two) This necessitated my ‘freestanding’ legvise also to be able to do this. In the pictures below you can see how I approached this issue. The inside jaw (or “leg”) of my legvise was modified to accept two pieces of 20 mm threaded rod, that would become the adjustable “feet” by fitting two nuts as shown. It will become clearer as we progress.

100_0383100_0385100_0384

I then cut the mortise intended to accept the parallel guide at the bottom the chop. Next I created the “hole” (it would only become a hole a little later in actual fact) through which the parallel guide moves in the “leg”.

100_0503100_0504100_0492100_0494

A quick dry fit to check how the parallel guide fits in it’s mortise at the bottom of the chop.

100_0490100_0491100_0489100_0505

Please note the makeshift fence to ensure that the holes in the parallel guide are well aligned. I had to drill these holes spread across three evenings as a result of the incredibly dense Ysterhout. Directly translated “ysterhout” means “ironwood” and it really is very similar to drilling holes in steel. The bits heats up with a vengeance, necessitating a substantial break before continuing or alternatively destroying the bit.

100_0591100_0592100_0633100_0634

Next I added (by means of PVA glue) the top and bottom of the inside jaw. The top will ultimately help to fix the inside jaw to the table and the bottom will create a surface to attach one of the rollers guiding the parallel guide. Just bear with me, it will all become as clear as daylight in the next riveting chapter.

100_0513100_0515

At this stage the final shaping took place. You obviously expected the je ne sais quoi to emerge at some stage didn’t you? The sexy symmetrical sloping semblance certainly adds you know what.

100_0549100_0550

Cutting thin Kershout and Witpeer strips on the table saw is not a good idea. You can probably see the burn marks in the first picture. I laminated some of these strips to create a blank to turn a bootylicious handle for the vise.

100_0653100_0679100_0680100_0722

The mentioned handle being shaped and turned.

100_0723100_0724100_0824

Finally the hole meant to allow the Parallel guide to extend through the inside jaw gets completed.

100_1085100_1086100_1087100_1088

In the pictures below you can see how the nuts that are supposed to accept the threaded rod feet gets locked into position by a thin Assegaai lid.

100_1089100_1090100_1091

 

In the last chapter we will discuss the final months of my the legvise pregnancy. Jippee ki-yay … as they say!!!

Alternative workbench/assembly table (Chapter four)

I am pleased to finally relieve your vehement anticipation for the next chapter in our fantastical journey in building a makeshift workbench that is ultimately destined to become a dedicated assembly table. In this chapter we will concentrate on the creation of the edges of the table. The edges (of the table) were designed to enhance the table’s ability to hold boards while one works it’s edges (of the boards). It is also designed to make it easy to attach various future jigs and modifications.

I decided to use Ysterhout (Olea capensis macrocarpa) for this purpose, due to it’s high specific gravity. Most sources have it at > 1.0 which means that it sinks in water, the way I understand the measurement. The Ysterhout I used certainly does sink. I actually tried it. This beautiful species of wood is extremely hardwearing (Janka side hardness 10,050–13,750 N and Janka end hardness 9780–14,200 N), which I thought would be ideal on the edges of a table that is going to slave away as a workbench for a few years. Check out the je ne sais quoi of these Ysterhout trees.

ysterhout boomysterhout bas

The problem with my Ysterhout is that it likes moving so much that I am always relieved to find it in the shop. I constantly worry that it might move to another neighborhood. This was the reasoning behind first building a fairly stable plywood apron to attach the Ysterhout edges to. The idea being that the former would keep the latter on the straight and narrow.

As a reminder of what I was aiming for in terms of these edges, see the Sketchup drawing below. I wanted to create a large sturdy T-channel for all the reasons above. As with most things, you can not readily buy something like this in Namibia so I came up with this plan.

table's edge

In the pictures below you can see were the process started. Two differently dimensioned Ysterhout strips for each of three sides of the table and their angle iron friends already cut to size.

100_0145

The preparation of the angle iron included drilling holes, countersinking them (in order to screw it to the Ysterhout) and treatment with a rust converter.

100_0147100_0151

The next step was to screw them into place with steel wood screws. In the first picture you can see how I clamped the two parts in order to keep the Ysterhout straight for the screwing activity to follow. No don’t worry we are not about to leap into porn, this is a family website.

100_0153100_0155100_0156

The Ysterhout-angle-iron-constituents were then screwed to the aprons and tabletop. The profusion of f-style clamps were needed to coax the ysterhout into position.

100_0160100_0157100_0158100_0159

Here you can see the table with the edges/T-channels in place on three sides. The side without a T-channel is the one on the opposite end where we installed the metal self-release-vise earlier in this epoch. I apologise for the poor quality of these pictures. It looks like I had some sawdust on the lens.

100_0161100_0162

Below you can see a quick test of the T-channel system, accepting a Festool mitre gage and a Bessey F-style clamp with considerable ease.

100_0164100_0165

Then I started with the really scary part of the edge attachment on the side of the table were the quick-release-vise live. What made this nerve-racking was the idea of having to use wider ysterhout boards and on top of that laminating two together in order to create the added thickness to encapsulate the inside face of the quick-release-vise. I wanted to enclose the inside face to create one flat surface on the entire edge of that end of the table.

In the pictures I chose you can follow the steps in preparing the edge. I removed a rectangular section from the inside board corresponding to the inside face of the vise before laminating it to the outside board. This was much easier than trying to chisel out the area after lamination. One would destroy several chisels (and probably limbs too) attempting to do that.

100_0167100_0170100_0171100_0172100_0173100_0174

All those screws were needed in conjunction with heaps of clamps to get the two pieces of ysterhout (each with it’s own ideas) to adhere to my intended configuration. You will not believe me if I tell you how much effort it took to do this, so I will not even try.

100_0176100_0175

Prior to attaching the edge I first inserted six 8mm nuts on the inside of the ysterhout communicating with 9 mm holes through to the outside. The idea with this was to created six points were one could easily attach various gadgets in future without having to first modify the table at all. You simply bolt the contraption of what ever nature to the edge with an 8 mm bolt or two.

100_0203100_0204100_0209100_0205

The only way I could flatten this monster was with a belt sander. Yes I know that is not the best way, but nothing else that I had available to me at the time made any impression on the wood. Therefore careful belt sander use and some serious sanding by hand enabled me to get it pretty damn flat. In the pictures below you can also see the cutout meant to open up the T-channel at each end of this ysterhout edge.

100_0210100_0211100_0213

 

Installing this edge was a mission in itself. First I rubbed grease on the inside face of the quick-release-vise. Then I mixed epoxy putty to fill in the 2-3 mm gap between the inside face of the vise and the recessed area of the ysterhout edge. The grease was meant to ensure that the putty does not stick to the inside face in case I ever need to remove the edge for some or other reason.

100_0214100_0215100_0216

The edge was then screwed to the table with 15 of the steel screws pictured. They are 5 x 100 mm each and again I had to use clamps as well to persuade the ysterhout to comply.

100_0217100_0218100_0219100_0220

That then concludes this chapter. Next time we will look at how I made the chop (at least I think that is what you call the wood that is meant to cover the moving jaw of the vise) and finished off the table. Hurrah!!!

100_0222